171 research outputs found

    On the Equivalence of Quadratic APN Functions

    Get PDF
    Establishing the CCZ-equivalence of a pair of APN functions is generally quite difficult. In some cases, when seeking to show that a putative new infinite family of APN functions is CCZ inequivalent to an already known family, we rely on computer calculation for small values of n. In this paper we present a method to prove the inequivalence of quadratic APN functions with the Gold functions. Our main result is that a quadratic function is CCZ-equivalent to an APN Gold function if and only if it is EA-equivalent to that Gold function. As an application of this result, we prove that a trinomial family of APN functions that exist on finite fields of order 2^n where n = 2 mod 4 are CCZ inequivalent to the Gold functions. The proof relies on some knowledge of the automorphism group of a code associated with such a function.Comment: 13 p

    Chromosome painting in the manatee supports Afrotheria and Paenungulata

    Get PDF
    BACKGROUND: Sirenia (manatees, dugongs and Stellar's sea cow) have no evolutionary relationship with other marine mammals, despite similarities in adaptations and body shape. Recent phylogenomic results place Sirenia in Afrotheria and with elephants and rock hyraxes in Paenungulata. Sirenia and Hyracoidea are the two afrotherian orders as yet unstudied by comparative molecular cytogenetics. Here we report on the chromosome painting of the Florida manatee. RESULTS: The human autosomal and X chromosome paints delimited a total of 44 homologous segments in the manatee genome. The synteny of nine of the 22 human autosomal chromosomes (4, 5, 6, 9, 11, 14, 17, 18 and 20) and the X chromosome were found intact in the manatee. The syntenies of other human chromosomes were disrupted in the manatee genome into two to five segments. The hybridization pattern revealed that 20 (15 unique) associations of human chromosome segments are found in the manatee genome: 1/15, 1/19, 2/3 (twice), 3/7 (twice), 3/13, 3/21, 5/21, 7/16, 8/22, 10/12 (twice), 11/20, 12/22 (three times), 14/15, 16/19 and 18/19. CONCLUSION: There are five derived chromosome traits that strongly link elephants with manatees in Tethytheria and give implicit support to Paenungulata: the associations 2/3, 3/13, 8/22, 18/19 and the loss of the ancestral eutherian 4/8 association. It would be useful to test these conclusions with chromosome painting in hyraxes. The manatee chromosome painting data confirm that the associations 1/19 and 5/21 phylogenetically link afrotherian species and show that Afrotheria is a natural clade. The association 10/12/22 is also ubiquitous in Afrotheria (clade I), present in Laurasiatheria (clade IV), only partially present in Xenarthra (10/12, clade II) and absent in Euarchontoglires (clade III). If Afrotheria is basal to eutherians, this association could be part of the ancestral eutherian karyotype. If afrotherians are not at the root of the eutherian tree, then the 10/12/22 association could be one of a suite of derived associations linking afrotherian taxa

    Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease

    Get PDF
    OBJECTIVE: Current cerebrospinal fluid (CSF) tests for sporadic Creutzfeldt-Jakob disease (sCJD) are based on the detection of surrogate markers of neuronal damage such as CSF 14-3-3 which are not specific for sCJD. A number of prion protein conversion assays have been developed, including real-time quaking induced conversion (RT-QuIC). The objective of this study is to investigate whether CSF RT-QuIC analysis could be used as a diagnostic test in sCJD. METHODS: An exploratory study was undertaken which analysed 108 CSF samples from patients with neuropathologically confirmed sCJD or from control patients. Of the 108 CSF samples 56 were from sCJD patients (30 female, 26 male, aged 31–84 years; 62.3 ± 13.5 years) and 52 were from control patients (26 female, 26 male, aged 43–84 years; 67.8 ± 10.4 years). A confirmatory group of 118 patients were subsequently examined which consisted of 67 cases of neuropathologically confirmed sCJD (33 female, 34 male, aged 39–82 years; 67.5 ± 9.0 years) and 51 control cases (26 female, 25 male, aged 36–87 years; 63.5 ± 11.6 years). RESULTS: The exploratory study showed that RT-QuIC analysis had a sensitivity of 91% and a specificity of 98% for the diagnosis of sCJD. These results were confirmed in the confirmatory study which showed that CSF RT-QuIC analysis had a sensitivity and specificity of 87% and 100% respectively. INTERPRETATION: This study shows that CSF RT-QuIC analysis has the potential to be a more specific diagnostic test for sCJD than current CSF tests

    Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes.

    Get PDF
    Schizophrenia has been conceived as a disorder of brain connectivity, but it is unclear how this network phenotype is related to the underlying genetics. We used morphometric similarity analysis of MRI data as a marker of interareal cortical connectivity in three prior case-control studies of psychosis: in total, n = 185 cases and n = 227 controls. Psychosis was associated with globally reduced morphometric similarity in all three studies. There was also a replicable pattern of case-control differences in regional morphometric similarity, which was significantly reduced in patients in frontal and temporal cortical areas but increased in parietal cortex. Using prior brain-wide gene expression data, we found that the cortical map of case-control differences in morphometric similarity was spatially correlated with cortical expression of a weighted combination of genes enriched for neurobiologically relevant ontology terms and pathways. In addition, genes that were normally overexpressed in cortical areas with reduced morphometric similarity were significantly up-regulated in three prior post mortem studies of schizophrenia. We propose that this combined analysis of neuroimaging and transcriptional data provides insight into how previously implicated genes and proteins as well as a number of unreported genes in their topological vicinity on the protein interaction network may drive structural brain network changes mediating the genetic risk of schizophrenia.This study was supported by grants from the European Commission (PSYSCAN - Translating neuroimaging findings from research into clinical practice; ID: 603196) and the NIHR Cambridge Biomedical Research Centre (Mental Health). SEM holds a Henslow Fellowship at Lucy Cavendish College, University of Cambridge, funded by the Cambridge Philosophical Society. PEV was supported by the Medical Research Council (MR/K020706/1) and an MQ fellowship (MQF17_24) and is a Fellow of the Alan Turing Institute funded under the EPSRC grant EP/N510129/1. KJW was funded by an Alan Turing Institute Research Fellowship under EPSRC Research grant TU/A/000017. ETB is supported by a NIHR Senior Investigator Award

    Phase transitions in LaFeAsO: structural, magnetic, elastic, and transport properties, heat capacity and Mossbauer spectra

    Get PDF
    We present results from a detailed experimental investigation of LaFeAsO, the parent material in the series of "FeAs" based oxypnictide superconductors. Upon cooling this material undergoes a tetragonal-orthorhombic crystallographic phase transition at ~160 K followed closely by an antiferromagnetic ordering near 145 K. Analysis of these phase transitions using temperature dependent powder X-ray and neutron diffraction measurements is presented. A magnetic moment of ~0.35 Bohr magnetons per iron is derived from Mossbauer spectra in the low temperature phase. Evidence of the structural transition is observed at temperatures well above the structural transition (up to near 200 K) in the diffraction data as well as the polycrystalline elastic moduli probed by resonant ultrasound spectroscopy measurements. The effects of the two phase transitions on the transport properties (resistivity, thermal conductivity, Seebeck coefficient, Hall coefficient), heat capacity, and magnetization of LaFeAsO are also reported, including a dramatic increase in the magnitude of the Hall coefficient below 160 K. The results suggest that the structural distortion leads to a localization of carriers on Fe, producing small local magnetic moments which subsequently order antiferromagnetically upon further cooling. Evidence of strong electron-phonon interactions in the high-temperature tetragonal phase is also observed.Comment: Revised and expanded magnetization and Mossbauer spectroscopy section. Clarified sample preparation description. This paper contains some results from arXiv:0804.0796. 10 figure

    End-to-end numerical modeling of the Roman Space Telescope coronagraph

    Full text link
    The Roman Space Telescope will have the first advanced coronagraph in space, with deformable mirrors for wavefront control, low-order wavefront sensing and maintenance, and a photon-counting detector. It is expected to be able to detect and characterize mature, giant exoplanets in reflected visible light. Over the past decade the performance of the coronagraph in its flight environment has been simulated with increasingly detailed diffraction and structural/thermal finite element modeling. With the instrument now being integrated in preparation for launch within the next few years, the present state of the end-to-end modeling is described, including the measured flight components such as deformable mirrors. The coronagraphic modes are thoroughly described, including characteristics most readily derived from modeling. The methods for diffraction propagation, wavefront control, and structural and thermal finite-element modeling are detailed. The techniques and procedures developed for the instrument will serve as a foundation for future coronagraphic missions such as the Habitable Worlds Observatory.Comment: 113 pages, 85 figures, to be published in SPIE Journal of Astronomical Telescopes, Instruments, and System

    Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Nature America for personal use, not for redistribution. The definitive version was published in Nature Neuroscience 12 (2009): 864-871, doi:10.1038/nn.2346.Selected vulnerability of neurons in Huntington’s disease (HD) suggests alterations in a cellular process particularly critical for neuronal function. Supporting this idea, pathogenic Htt (polyQ-Htt) inhibits fast axonal transport (FAT) in various cellular and animal HD models (mouse and squid), but the molecular basis of this effect remains unknown. Here we show that polyQ-Htt inhibits FAT through a mechanism involving activation of axonal JNK. Accordingly, increased activation of JNK was observed in vivo in cellular and animal HD models. Additional experiments indicate that polyQ-Htt effects on FAT are mediated by the neuron-specific JNK3, and not ubiquitously expressed JNK1, providing a molecular basis for neuron-specific pathology in HD. Mass spectrometry identified a residue in the kinesin-1 motor domain phosphorylated by JNK3, and this modification reduces kinesin-1 binding to microtubules. These data identify JNK3 as a critical mediator of polyQ-Htt toxicity and provides a molecular basis for polyQ-Htt-induced inhibition of FAT.This work was supported by 2007/2008 MBL summer fellowship to GM; an HDSA grant to GM; NIH grants MH066179 to GB; and ALSA, Muscular Dystrophy Association, and NIH (NS23868, NS23320, NS41170) grants to STB
    • …
    corecore